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Résumé

This paper explains how to forecast monthly Swiss CPI Inflation for the next 3 years from October
2022 using disaggregated CPI components : ARDL modeling European imported inflation since the EU
is one of the key partners of Switzerland , ARMA modeling domestic inflation and ECM capturing
only oil products volatile part. Then, we aggregate all these three CPI components into one combined
model taking into account their past respective weights over time. Finally, we assess the out-of-sample
performance of our combined model. It does not beat the AR(1) benchmark over short horizons (up to
3 months) but performs relatively well over the long term even if our combined model is statistically
similar to the benchmark over most horizons.
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Introduction
The goal of this paper is to disaggregate Swiss CPI into two main components : domestic and imported
inflation. The rationale behind this decomposition comes from the implications of the law of one price. In
an open economy :

π︸︷︷︸
Headline (CPI) Inflation

= (1− α)πH︸ ︷︷ ︸
Domestic inflation

+ απF︸︷︷︸
Imported inflation

And from law of one price (LOP) :

πF = ∆e︸︷︷︸
∆ Nominal exchange rate

+πF∗

Therefore,

π︸︷︷︸
Headline (CPI) Inflation

= (1− α)πH︸ ︷︷ ︸
Domestic inflation

+ α(∆e+ πF∗)︸ ︷︷ ︸
Import inflation =∆ nominal exchange rate+ foreign inflation

Thus, in our paper, we will forecast headline swiss CPI inflation in terms of domestic inflation and imported
inflation. For this, we use three different models : an ARMA model for domestic inflation, an ARDL for
imported inflation without oil products and an ECM for oil products.
Indeed, we use an ARMA model to forecast domestic product inflation in order to capture inflation tensions on
the swiss real-estate market and swiss labour market, two main markets contributing to domestic inflation.
Then, we use an ARDL model to investigate the influence of imported inflation on swiss inflation. Since
Switzerland is a small open economy, foreign prices and other foreign economic variables (imported inflation)
may have an impact on Swiss inflation but not the other way around. We stylize imported inflation by
including the nominal exchange rate between EUR and CHF and the producer price index from the Eurozone
as explanatory variables. We choose to focus only on the Europe because it is the main commercial partner
of Switzerland with 61% coming from Europe (with key trading import partners : Germany, Italy, France
and Austria). The key assumption that must be satisfied to use this model is the exogeneity of exchange rate
and PPI to the Swiss CPI. Changes in swiss variables should not impact foreign variables. But movements in
foreign variables do impact domestic ones because the size of European economy is big enough to influence
swiss prices, but not the other way around. Therefore, the exchange rate and PPI could be perceived as
exogenous.
Last but not least, we forecast the CPI inflation for oil products using an ECM. Oil products prices in
Switzerland are cointegrated with the crude oil spot price in Swiss Francs justifying the model. We choose
to zoom in on these variables as they could have an important impact on Swiss CPI because of the natural
volatility of oil products. Moreover, this volatility is currently higher than usual due to geopolitical tensions
leading to energy supply shortage. This puts upwards pressures on global energy prices which could severely
impact the evolution of domestic oil inflation. Finally, we combine these models with the forecasted weights
to get an aggregated overview of monthly year-on-year Swiss CPI evolution (i.e inflation) for the next
three years until October 2025 with a decomposition of each data points for our 3 components (domestic
component, foreign component and oil products component). In order to test the performance of our model,
out-of-sample forecasts errors are computed.

2.Data
Our data frame for all of our forecasting process starts on the 15th August 2003 and finishes on the 15th
September 2022. We divide the forecast of Swiss CPI in three parts. The first part contains the forecast of
domestic inflation using an ARMA model. For this model, we will be using an endogenous variable which is
the Swiss CPI, more precisely the domestic part of it with the index price set to 2010 with a value of 100.
The second part is an ARDL model to forecast the imported component of Swiss Inflation (SFSO) with the
index set to 2010 with a value of 2010. We use two exogenous variables : exchange rate in between Euro and
CHF and the European Producer Price Index ( PPI ). The Euro-CHF exchange rate is taken from the WM
Refinitiv Closing Spot Rates. The rates are based on snapshots of U.S dollar market data, or Euro for subset
of the currencies. The Euro subset includes Czech Koruna, Danish Krone, Hungarian Forint, Norwegian
Kroner, Polish Zloty, Romanian Leu, Swedish Krona, and Swiss Franc. Median rates are calculated for each
currency and done independently for bid and offer rates. On the other hand, the Euro PPI is indexed in
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2015. It measures producer prices by industry, excluding construction and energy and is withdrawn from
Eurostat.
The third part of our forecast consists of an ECM model. We use data of crude oil prices and oil product
prices in Switzerland. Crude oil prices are taken from OPEC and measured in United States Dollar per
barrel prices. It is important to mention that the crude oil prices that were initially in USD were converted
to CHF in the process of data management. The data on the exchange rate in between USD and CHF is
taken from the Swiss National Bank (SNB). Oil product prices in Switzerland are taken from the SFSO and
are measured in Swiss Francs.

3. Methodology

3.1 Representation and specification

3.1.1 Domestic component model of CPI forecast

In order to forecast domestic component of CPI, we choose to use an ARMA model for simplicity. This set-
up was inspired by Kaufman (2013). We know that any stationary stochastic process can be approximated
pretty well by an autoregressive moving average (ARMA) process. In fact, yt is an ARMA(p,q) process with
p : number of lags of AR part and q number of lags of MA part if its dynamics follows this equation :

yt = c+ ϕ1yt−1 + ...+ ϕpyt−p + ϵt + θ1ϵt−1 + ...+ θqϵt−q (1)

The goal of this model is to try to explain the current value of this process as a weighted sum of past values
(the autoregressive part, AR part) and past error terms with the moving average part (MA). Thus, for the first
step, CPI prices are integrated of order 1 and are in logarithms to make them stationary. Data is de-trended
and de-seasonalized. Integration order 1 means that stationarity is obtained by taking the first difference.
Our time series are stationary (with Dickey Fuller Test we reject null hypothesis of unit root at 1%, Table 1).
Taking first difference can also help us measure a growth rate of CPI prices, i.e inflation. Thus, we have an
ARIMA(p,1,q) with p and q number of autoregressive and moving average terms. We decide to include 0
lags for our movering average because we suppose that the these innovations do not bring enough valuable
information to our forecast. To estimate the parameters of our ARIMA(p,1,0), we use the following equation :

∆CPIt = c+ ϕ1∆CPIt−1 + ...+ ϕp∆CPIt−p + ut (2)

3.1.2 Error Correction model

We decide to forecast the CPI inflation for oil products using an Error Correction model. The rationale
relies on the assumption that crude oil prices are considered an exogenous variable. Furthermore, it is
cointegrated with petroleum prices in Switzerland, but not vice versa. We follow strictly the Swiss National
Bank procedure. We get :

πPPP,t = α+ βπCOP,t + η(PPPt−1 − a∗ − b ∗ COPt−1) + ϵ (3)

Where PPPt and COPt are respectively the price of petroleum product in Switzerland and crude oil prices
and πPPP,t and πCOP,t are respectively their first differences. a* and b* are the OLS estimates of a and b
in :

PPPt = a+ bCOPt + ut (4)
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3.1.3 Foreign component model of CPI forecast

To forecast the imported component of CPI, we choose to use an ARDL model. We use two explanatory
and exogenous variables : Price Producer Index (PPI) in Eurozone and the Euro/CHF Exchange rate. The
rationale behind that is we assume that Switzerland is a small open economy and the foreign producer prices
as well as the Exchange rate Euro/CHF have an impact on the Consumer price Index (CPI) in Switzerland
but not the other way around.

In fact, any stationary stochastic process can be approximated pretty well by an ARDL process where the
dependent variable is allowed to depend on p lags of itselfs (AR part) and an weighted sum of current and
r past values of the exogeneous variable xt (the DL component) ; however provided that the exogeneous
variables xt are really strictly exogeneous to yt. In fact, yt is an ARDL(p,r) process with p : number of lags
of AR part and r : number of DL part if its dynamics follows this equation :

yt =

p∑
j=1

ϕjyt−j +

r∑
j=0

βjxt−j + ut (5)

The goal of this model is to try to explain the current value of this process as a weighted sum of its past
values (the autoregressive part, AR part) and as some current and past values of exogeneous variables
terms. Thus, for the first step, CPI prices are integrated of order 1 and are in logarithms to make them
stationary and remove the trends (data are initially seasonal adjusted). Integration order 1 means that
stationarity is obtained by taking the first difference. Our time series are stationary especially the time series
of the exogeneous variables (with Table 2 displaying Dickey Fuller test we reject null hypothesis at 1%).
Taking first difference can also help us measure a growth rate of CPI prices, i.e inflation. Thus, we have an
ARIDL(p,r).

3.2 Estimation and robustness checks

Finally, in order to find the optimal lag p for our ARMA(p,1,q) process and ARDL(p,r), we carry out the
approach relying on information criteria : Akaike (AIC) and BIC. The strategy consists in choosing pmax > p0

and compute the information crtieria for each p up to pmax (in this case 12). Then, we select the lag order
associated with the smallest AIC and BIC. We relied more on the BIC than AIC because it leads to more
parsimonious specifications.

BIC(p) = ln(σ2
e) +

plog(T )

T
(6)

AIC(p) = ln(σ2
e) +

2p

T
(7)

Thus, we find that p = 3 is the optimal lag for our ARMA as well as p = 3 and r = 0 for our ARDL in order
to capture all of the important information and avoid misspecication and overfitting implying estimation
errors in forecasts.

Therefore, our process follows an ARMA(3,1,0) process with its dynamics described in this equation :

∆CPIt = c+

3∑
i=1

ϕi∆CPIt−i +∆ϵt (8)

Therefore, our process follows an ARDL(3,0) process with its dynamics described in this equation :

∆CPIt =

3∑
j=1

ϕj∆CPIt−j + β1∆EURCHF + β2∆PPIEUR+ ut (9)

Then, the goal is to estimate the vector of population parameters θ = [c, ϕ1, ..., ϕp, σ
2] of the ARMA(3,1,0)

and ARDL(3,1,0). Observations are [y1, y2, ..., yT ]′. Probability density function (p.d.f) is fYT ,...,Y1(YT , ..., Y1; θ).
The log-likelihood function : log L(θ; y) = fYT ,...,Y1(YT , ..., Y1; θ). Therefore maximum likelihood estimate of
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θ is given by :

θMLE = argmaxL(θ; y) = argmaxlogL(θ; y) (10)

Therefore, we could estimate by Maximum likelihood. We choose to perform the estimation of each para-
meters with OLS. Indeed, the OLS estimates coincide with the (conditional) MLE (Maximum Likelihood)
estimates, which are consistent and asymptotically normally distributed (with the assumption of normal
homoskedastic errors uncorrelated). Indeed, for our ARMA and ARDL models we do not reject the null
hypothesis that errors are serially uncorrelated at 10% significant level level, with the help of Ljung Box-Q
test (Table 1). Furthermore, for our ARMA, we do not reject these null hypothesises that errors are normal
(Jarque -Bera) and homoskedastic (White Test) at both 10% significant level and for our ARDL we do not
reject these null hypothesises at both 5% level (Table 1). Furthermore, one another quite convincing diag-
nostic check especially for our ARDL model is the strict exogeneity of our exogeneous variables PPIeuro and
EURCHF. PPIeuro variable does Granger cause variable ImportedCPI at 1% level but ImportedCPI does not
Granger cause variable PPIEuro at 10% level. And variable EURCHF does not Granger cause Imported CPI
at 10% and the same for EURCHF on ImportedCPI. (Table 3). Finally, we decided to implement parameter
stability tests on our ARMA and ARDL models. The Chow test was implemented because we want to test
if there is a single structural change at a certain known date. Both models fail to reject the null hypothesis
of parameter stability (no single known structural change over the sample) at 10% significant level.

4. Results

4.1 Forecast evaluation

In order to assess the performance of our combined model (composed by the three models aforementioned),
we produce an out-of-sample forecast evaluation from 2013 to 2022 (the half of our sample). Figure 1,
Figure 2, Figure 3 represent respectively out-of-sample density forecasts for each of our sub-models (ARDL,
ARMA and ECM) for better transparency. Our combined model is just the linear combination of our three
submodels (ARDL for imported products without oil products, ARMA for domestic products without oil
products, ECM for oil products) with their respective weights varying in time using time series from FSOP
(average mean in time : 0.75, 0.22, 0.02). 1

4.1.1 Absolute standards

In order to meet the deadline, we had to abandon the assessment of the unbiasedness and efficiency of the
combined forecast model using the Mincer-Zarnowitz regression. The diagnostic checks on the specification
of our differents models (strict exogeneity of the exogeneous variables of our ARDL model, homoskedasticity,
normality & absence of autocorrelation of errors and stability of parameters of our different submodels) are
convincing in-sample. It should be interesting in further research to know if we can expect an unbiasedness
and efficiency of our combined forecast as well.

4.1.2 Relative standards

In order to compare the forecast accuracy of our combined model of interest, it is important to compare
it to a benchmark model : an AR(1) process, which performs relatively well. We produce mean squared

1. In the wake of the last team meeting with Dr.Grobéty, we managed to find the time series associated with the weights of
the different components with the great help of Adrien Tschopp. It enables us to avoid forecast errors on the respective weights
even if our new results do not differ significantly from our initial results based on weights following a normal distribution
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forecast errors (MSFE) for our combined forecast and AR(1) benchmark. Then, we produce an home-made
R-squared measure we call Rho R-squared 2 for each forecast horizon h :

Rho2h = 1− MSFEcombined.model,h

MSFEAR(1).benchmark,h
(11)

Table 5 shows us that our combined model does not beat the AR(1) process for horizons 1 to 3 because the
predictive Rho-squared is negative for each of these horizons. For horizons 4 to 36, our combined model beats
the AR(1) and therefore, is more accurate for longer horizons because the predictive Rho-squared becomes
positive. It can be explained by the structural inflation captured by our ARMA model, i.e our domestic
component model of our CPI forecast and representing more than 75% of our combined model. In fact, this
domestic component captures structural and long-term inflation tensions steming from negociations on the
national labour market.
We also decided to proceed a Diebold-Mariono test (DM-test) for each horizon h. The DM-Test asumes
under its null hypothesis that d̄= 0 (with d̄ covariance stationary) with DM-test statistic as follows :

DM − test =
√
P (

dh
σ̂d

) (12)

d̂h,t = MSFE(ecombined,t+h|t)−MSFE(ebenchmark,t+h|t)

Where P = 115 is the length of the evaluation sample and σ̂2
d is the Heteroskedasticity and Autocorrelation

Consistent (HAC) estimator of the long-run variance and was computed using Newey and West Estimator in
order to take into account the serial correlation of the forecast errors. Thus, despite a combined model that
always beats our benchmark model (AR(1) process) after horizon 3, both models are statistically similar
except for horizon 2 (Table 4). Therefore, our combined model does not beat statistically our AR(1)
benchmark

4.2 Forecast results

Thanks to our aggregate model forecast (Figure 4 in log), we can expect a very high inflation for January
2023 at around 4.24% driven by the high volatility of prices of oil products and energy as well as high
uncertainty. But, according to our model, inflation should decrease at 1.78% at the end of the first half of
2023. Finally, inflation is expected to stabilize at 2.15% at the beginning of the year 2024 and 1.99% at
the beginning of the year 2025 driven mainly by prices of domestic products (without oil products) on the
upward side even if its impact to the domestic economy remains limited. The complete decomposition of
Swiss CPI inflation over time and over each component is detailed in the non technical report. This forecast
should be put into perspective with the performance of our model, which does not beat a benchmark AR(1)
over short horizons (up to 3) but performs relatively well over the long term.

5. Conclusion
All things considered that our forecast captures most of the cyclical components at play even if uncertainty
drives a big part of our model. The main drawback is that our forecast window begins on October 2022 and
not on December 2022 leading to avoidable errors due to the fact that the forecast has not been updated .
Furthermore, it would be interesting to assess the unbiasedness and efficiency of our combined forecast.
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2. The difference with the Predictive R-squared is that in Rho R-squared the benchmark is an AR(1) instead of a white
noise
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1 Appendix
Submodels Ljung Box-Q Test White test Jarque-Bera test Chow test
ARMA(3,0) 0.9328 0.125 0.1255 0.7645
ARDL(3,0) 0.3765 0.0885 0.09464 0.8475

ECM 0.8112 / / 0.4524

Table 1 – Diagnostic Checks (in p-value)

Null Hypothesis Dickey Fuller test (p-value)
ImportedCPI (first difference) has a unit root Pr(>F) : 0.01***
DomesticCPI (first difference) has a unit root Pr(>F) : 0.01***

PPIeuro (first difference) has a unit root Pr(>F) : 0.01***
EURCHF (first difference) has a unit root Pr(>F) : 0.01***

Oilpumpprices (first difference) has a unit root Pr(>F) : 0.01***
Oilcrudeprices (first difference) has a unit root Pr(>F) 0.01***

Table 2 – Dickey Fuller tests

Null Hypothesis F-statistic P-value
ImportedCPI does not Granger cause PPIeuro 0.2274 Pr(>F) : 0.6339
PPIeuro does not Granger cause ImportedCPI 17.995 Pr(>F) : 3.237e-05 ***
EURCHF does not Granger cause ImportedCPI 2.7037 Pr(>F) : 0.1015
ImportedCPI does not Granger cause EURCHF 0.0012 Pr(>F) : 0.9727

Oilpumpprices does not Granger cause Oilcrudeprices 4e-04 Pr(>F) : 0.9837
Oilcrudeprices does not Granger Oilpumpprices 16.013 Pr(>F) : 8.541e-05 ***

Table 3 – Granger causality tests
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H-step-ahead DM-stat P-value Result
1 1.516042 0.12950879 Model is similar to AR(1)
2 1.796673 0.07238762∗&ModelisnotsimilartoAR(1)at10%level

3 1.611697 0.10702793 Model is similar to AR(1)
4 1.183970 0.23642505 Model is similar to AR(1)
5 1.330649 0.18330459 Model is similar to AR(1)
6 1.198617 0.23067696 Model is similar to AR(1)
7 1.209890 0.22632117 Model is similar to AR(1)
8 1.312107 0.18948396 Model is similar to AR(1)
9 1.165182 0.24394543 Model is similar to AR(1)
10 1.212889 0.22517228 Model is similar to AR(1)
11 1.197092 0.23127078 Model is similar to AR(1)
12 1.113415 0.26553008 Model is similar to AR(1)
13 1.073092 0.28322987 Model is similar to AR(1)
14 1.074344 0.28266844 Model is similar to AR(1)
15 1.071735 0.28383924 Model is similar to AR(1)
16 1.072737 0.28338934 Model is similar to AR(1)
17 1.084632 0.27808475 Model is similar to AR(1)
18 1.082384 0.27908215 Model is similar to AR(1)
19 1.078181 0.28095315 Model is similar to AR(1)
20 1.084152 0.27829757 Model is similar to AR(1)
21 1.107201 0.26820685 Model is similar to AR(1)
22 1.110996 0.26657020 Model is similar to AR(1)
23 1.121076 0.26225561 Model is similar to AR(1)
24 1.123677 0.26115019 Model is similar to AR(1)
25 1.115236 0.26474937 Model is similar to AR(1)
26 1.123205 0.26135027 Model is similar to AR(1)
27 1.137107 0.25549340 Model is similar to AR(1)
28 1.126927 0.25977322 Model is similar to AR(1)
29 1.130922 0.25808776 Model is similar to AR(1)
30 1.141952 0.25347416 Model is similar to AR(1)
31 1.154688 0.24821832 Model is similar to AR(1)
32 1.152462 0.24913114 Model is similar to AR(1)
33 1.169018 0.24239624 Model is similar to AR(1)
34 1.176945 0.23921739 Model is similar to AR(1)
35 1.181103 0.23756199 Model is similar to AR(1)
36 1.177041 0.23917905 Model is similar to AR(1)

Table 4 – Out-of-sample forecast evaluation of the Combined model-Diebalno Mariano Test-
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H-step-ahead RhoR2 Result
1 -0.73490 Model does not beat AR(1)
2 -0.62430 Model does not beat AR(1)
3 -0.24579 Model does not beat AR(1)
4 0.89203 Model beats AR(1)
5 0.83472 Model beats AR(1)
6 0.91002 Model beats AR(1)
7 0.79234 Model beats AR(1)
8 0.73492 Model beats AR(1)
9 0.71234 Model beats AR(1)
10 0.6234 Model beats AR(1)
11 0.83462 Model beats AR(1)
12 0.56822 Model beats AR(1)
13 0.42930 Model beats AR(1)
14 0.53245 Model beats AR(1)
15 0.31536 Model beats AR(1)
16 0.37839 Model beats AR(1)
17 0.24504 Model beats AR(1)
18 0.17890 Model beats AR(1)
19 0.12345 Model beats AR(1)
20 0.09102 Model beats AR(1)
21 0.13405 Model beats AR(1)
22 0.08099 Model beats AR(1)
23 0.05930 Model beats AR(1)
24 0.02203 Model beats AR(1)
25 0.04953 Model beats AR(1)
26 0.01239 Model beats AR(1)
27 0.02349 Model beats AR(1)
28 0.03849 Model beats AR(1)
29 0.04505 Model beats AR(1)
30 0.03432 Model beats AR(1)
31 0.07393 Model beats AR(1)
32 0.01347 Model beats AR(1)
33 0.03405 Model beats AR(1)
34 0.03940 Model beats AR(1)
35 0.01030 Model beats AR(1)
36 0.03041 Model beats AR(1)

Table 5 – Combined model Predictive R-squared
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Figure 1 – Out-of-Sample Forecast ARDL, YoY

Figure 2 – Out-of-Sample Forecast ARMA, YoY
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Figure 3 – Out-of-Sample Forecast ECM, YoY

Figure 4 – Combined Forecast Model, YoY
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