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Framework

Conducted for CREA (Swiss Institute of Applied Macroeconomics of University of Lausanne)
and part of my master thesis, we propose a Factor Augmented VAR (FAVAR) a la
Bernanke, Boivin, and Eliasz (2005) tailored for a small economy in the spirit of Mumtaz
and Surico (2009) to forecast real Swiss GDP growth. We use principal components analysis
and expectation-Maximization algorithm to extract factors from a diverse set of a large number
of variables with missing values (and different frequencies) and modeled them with the target
variable within a VAR framework in a two step estimation approach. Our FAVAR remains
structural by dividing the model into two blocks : one for foreign and one for domestic factors.
Fach block encompasses a real activity, inflation, money supply & interest rates and
financial conditions factor, contributing to the model’s economic interpretability. To
assess its out-of-sample performance, we compare our FAVAR model to different benchmarks,
including univariate and multivariate models, across various forecasting horizons (up to 12
quarters ahead) and over different evaluation sample.

In this post, we aim to outline the key steps in building an advanced forecasting model
akin to those used by institutions. We will cover everything from data collection and
preparation to the out-of-sample forecasting exercises, providing code snippets to facilitate
replication. Our main focus will be on implementing the cutting-edge two-step estimation
FAVAR approach in R, which is particularly efficient at handling a large number of variables.

Disclaimer

The author of this work did his internship at the CREA (Swiss Institute of Applied Macroe-
conomics of University of Lausanne) under the supervision of Mathieu Grobéty and Brendan
Berthold. The opinions and assessments herein presented pertain to the author
and should not be related to the views of CREA. CREA is not liable in any way
for the present paper. The data were retrieved through Datastream at CEDIF (Centre de
Documentation et d’'Initiation Financiere) solely for the purpose of this project : “Forecasting
the Swiss Economy,” which is currently pending. Unfortunately, for proprietary reasons, we
will not display the dataset.

Dataset

Every data series was collected carefully from Datastream by myself and automated by request
at CEDIF for future use and updating. The static data series of each country are in the different
static excel files from 1980Q1 to 2023Q3. In total, there are 320 variables (152 quarterly,
154 monthly, 14 daily). The dataset consists of 155 domestic variables from Switzerland and
172 foreign variables that capture foreign economic activity which is relevant for a small-open
economy like Switzerland. The foreign variables encompass variables from the main trading



partners in Europe, such as Germany, France, Italy and the United Kingdom, as well as
other main trading partners such as the United States, China and Japan. Then, our dataset
contains 4 types of variables as in Mumtaz and Surico (2009) : real activity data including real
GDP, gross value added, industrial production, investment, consumption, exports, imports,
employment, vacancies, consumer confidence index, retail sales; inflation data including the
main price indices (GDP Deflator, CPI, core inflation, PPI, oil prices); money & interest rates
data including money supply M1, M2, M3, banknotes in circulation, sight deposits, saving
deposits and the different interest rates (policy rates, discount rates, government bond yields,
mortgage lending rates. . . ) and finally financial conditions variables including house
prices, stock prices, uncertainty indexes and effective exchange rates. Swiss variables are more
granular, with more precise data by industry and sector, in order to better capture accurately
the domestic dynamics.

Dataset Share by Types of Variables

r Type . Financial Conditions . Inflation . Money supply and Interest Rates . Re

Data Preparation

Packages loading

Firstly, we have to install and load the necessary libraries. We try to limit the use of
packages and rely only on the important ones.



packages <- c("tidyverse", "seasonal", "tseries","splines",'"vars","lmtest",
"readx1l", "missMDA", "lubridate","zoo","forecast","knitr","dfms","xts",
"stats","kableExtra")

“tidyverse” for data manipulation, data wrangling, nice plots...
"lubridate” designed to make working with dates and times easier and more intuitive
“seasonal for variables seasonal adjustment using X13-ARIMA SEATS procedure
“tseries™, "xts’, "zoo  for time series manipulation and unit root tests
"splines” for piecewise spline cubic interpolation

“vars® for Vector Auto Regressive estimation and prediction

‘missMDA " for missing values imputation using PCA-EM algorithm

"readxl”™ for reading excel files

“forecast for ARIMA forecasting and Diebold Mariano tests

"knitr® and “KableExtra for creating nice tables in LaTex or HTML

“stats”™ for principal components analysis

H OH OH H HF H O H H K H

#function
libraries <- function(packages){
for(package in packages){
#checks if package is installed
if ('require(package, character.only = TRUE)){
#I1f package does not exist, then it will install
install.packages(package, dependencies = TRUE)
#Loads package
library(package, character.only = TRUE)
}
b
}
#apply the function passing the packages vector as an argument
libraries(packages)

Each Excel file corresponds to a country (Switzerland, Japan, Germany, USA, United King-
dom, France, China, Italy). Within each Excel file, each sheet represents a type of variable
(Real Activity, Inflation, Money & Interest Rates, and Financial Conditions) with the cor-
responding frequency. For example “RA_ q” refers to Real Activity variables in quarterly
frequency. In this next code chunk, we load the different data sets using some loops in
order to get every quarterly variables (Real Activity, Inflation, Money and Interest Rates and
Financial conditions) of each country in one data frame.



Data loading

countries <- c('Switzerland', 'Japan', 'Germany', 'USA', 'UK', 'France', 'China', 'Italy"')
sheets <- c('RA_q', 'INF_q', 'FC_q','MI_q')

# RA_q for Real Activity variables, INF_q for inflation variables,
# FC_q for financial conditions variables all in quarterly frequency

quarterly_data <- NULL

start_date <- as.Date("1980-01-01") # Start date

end_date <- as.Date("2023-04-01") # End date

dates <- seq(start_date, end_date, by = "quarter") # Generate quarterly dates
quarter_dates <- zoo::as.Date.yearqtr(zoo::as.yearqtr(dates, format = 'Q%q %Y'))
quarterly_aggregate <- data.frame(yq = quarter_dates)

for (country in countries) {

for (sheet in sheets) {
file_path <- paste("data/", country, ".xlsm", sep = "")

# Check if the sheet exists in the Excel file

if (sheet %in), excel_sheets(file_path)) {
sheet_name <- sheet
data <- read_excel(file_path, sheet = sheet_name, skip = 1) %>%
rename (date = Code) %>%
mutate(yq = zoo::as.Date.yearqtr(zoo: :as.yearqtr(date, format = 'Qlkq %Y'))) %>%
dplyr: :select(yq, everything(), -date)

quarterly_aggregate <- full_join(quarterly_aggregate,data, by='yq')
} else {

cat("Sheet", sheet, "does not exist in", country, ".xlsm\n")
}
}
}

Sheet INF_q does not exist in Switzerland .xlsm
Sheet MI_q does not exist in Switzerland .xlsm



Sheet FC_q does not exist in Japan .xlsm
Sheet MI_q does not exist in Japan .xlsm
Sheet FC_q does not exist in Germany .xlsm
Sheet MI_g does not exist in Germany .xlsm
Sheet FC_q does not exist in USA .xlsm
Sheet MI_q does not exist in USA .xlsm
Sheet FC_q does not exist in UK .xlsm
Sheet MI_q does not exist in UK .xlsm
Sheet FC_q does not exist in France .xlsm
Sheet MI_q does not exist in France .xlsm
Sheet INF_q does not exist in China .xlsm
Sheet FC_q does not exist in China .xlsm
Sheet MI_q does not exist in China .xlsm
Sheet FC_q does not exist in Italy .xlsm
Sheet MI_qg does not exist in Italy .xlsm

Then, we load the merging excel file with the corresponding information of each variable
(description of the variable, seasonal adjustment, type of variable, country...)

merging.df = readxl::read_excel('data/merging final.xlsx') %>%

filter(Frequency == 'quarterly') %>%

rename (TickerDatastream=Symbol) %>%

mutate(variable = gsub(" ", "", gsub('[[:punct:] ]+',' ',TickerDatastream)))
#R does not understand the "..." in the Ticker Datastream so we get rid of it

quarterly_aggregate = quarterly_aggregate 7>/
gather(key = variable, value = value, -yq) %>%
mutate(variable = gsub(" ", "", gsub('[[:punct:] ]+',' ',variable))) %>%
left_join(merging.df, by = 'variable') %>%
mutate (value=as.numeric(value))

Seasonal adjustment

Then, the time series not already seasonal adjusted should be seasonal adjusted for the
analysis using the X13-ARIMA SEATS procedure used by the Census Bureau and most of the
central banks (European Central Bank, Bank of Spain...) . Therefore, the seasonal library is

used.

# seasonal adjust the quarterly variables that are not with final(seas(.)) command.



quarterly_aggregate_no_SA = quarterly_aggregate %>
dplyr::filter(Adj == 'nmo SA' & variable != 'SWIPCONSH') %>%
group_by(variable) 7%>%
drop_na(value) %> # drop the missing values before seasonal adjustment
mutate(value=final (seas(ts(value, frequency = 4, start =c(lubridate::year(yq) [1],1)))))

# variables that are already seasonal adjusted

quarterly_aggregate_SA = quarterly_aggregate 7>} dplyr::filter(Adj !'= 'no SA') %>J, drop_ns
# Re aggregate

quarterly_aggregate_seas = rbind(quarterly_aggregate_no_SA, quarterly_aggregate_SA)

In order to check if the seasonal adjustment was correctly done we plot a random seasonal
adjusted variable (variable = ‘SWTA3136N’) with ggplot (already loaded in the tidyverse
package)

# Plot a quarterly variable (in blue non seasonal adjusted variable and in black seasonal

quarterly_aggregate 7>
dplyr::filter(Adj == 'no SA' & variable !
rename (value raw = value) %>%
dplyr::select(yq, variable, value_raw) %>%
left_join(quarterly_aggregate_seas, by = c('yq', 'variable')) %>%
filter(variable == 'SWTA3136N') %>%
gegplot() +
geom_line(aes(x = yq, y = value, color

"SWIPCONSH') %>Y%

'Seasonal Adjusted')) +
geom_line(aes(x = yq, y = value_raw, color = 'Non Seasonal Adjusted')) +
facet_wrap(~variable) +

scale_color_manual (name = "Adjustment",
values = c('Seasonal Adjusted' = "black",
'Non Seasonal Adjusted' = "blue")) +

theme (legend.position = "bottom") +
theme_classic()
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Stationarity

Then, each series is transformed to be approximately integrated of order 0 by taking
the log-difference. To ensure consistency regardless of their frequencies, all variables have
been transformed into quarter-on-quarter growth rates for quarterly variables and 3-month
growth rates for monthly variables, i.e in growth rates, except for interest rates and yields.

To check the stationarity of the transformed time series, we apply an augmented Dickey
Fuller test with a 10% rejection of the null hypothesis HO. Once a first difference of the
level/logarithmic-series applied , a few series were not judged stationary with respect to the
unit-root test. In these cases, a second difference of the level /logarithmic-series is applied. We
can also apply other unit root/stationarity tests like KPSS or Phillips-Perron test.

The target variable to forecast is approximated using Swiss real GDP from SECO in
level already adjusted for seasonal, calendar and sport event effects. Here, the target
variable Y, depicts the quarter-on-quarter GDP growth rate corresponding to the change from
the previous quarter. It is as defined as :

Y, =100 x 1 Ltl
t X log Yl (1)
t—1

with Y} the real GDP from SECO in level at quarter t and Y! | at quarter ¢t — 1. It is a
quarterly variable.



# Apply first log difference on quarterly dataset to make them stationary

quarterly_aggregate_seas = quarterly_aggregate_seas %>}, group_by(variable) %>7
mutate(value = (log(value) - log(lag(value)))*100) %>} ungroup()

# Adf test with tseries library
quarterly_aggregate_seas_adf_test = quarterly_aggregate_seas %>/
group_by(variable) 7>% na.omit(value) %>’

mutate (adf_test_p_value = adf.test(value)$p.value) %>}, ungroup()

print (unique (quarterly_aggregate_seas_adf_test$adf_test_p_value)) # p-values overview

[1] 0.01000000 0.01442791 0.01859046 0.01962556 0.02173802 0.01584546

[7] 0.01731356 0.01893731 0.03898203 0.05269736 0.01269812 0.02826987
[13] 0.01631024 0.01058451 0.07758065 0.13447386 0.01892127 0.03274027
[19] 0.02248844 0.01349715 0.01115918 0.09133751 0.01261217 0.02157285
[25] 0.15805439 0.40596553 0.07537122 0.01216056 0.02011675 0.08533531
[31] 0.48874411 0.04668052 0.09936814 0.02371349 0.40555079 0.06617781
[37] 0.01779831 0.37969236

# Print non stationary variables (p-values higher than 0.1)
quarterly_aggregate_seas_adf_test 7>/ filter(adf_test_p_value > 0.1) %>%
pull(variable) %>%
unique() %>% print()

[1] "SWEMPIFSP" "SWEMPFOCP" "SWHP70OCF" "BDGDPIPDE" "FRGDPIPDE" "ITGDPIPDE"

A p-value equal or smaller than 0.1 means that we reject the null hypothesis HO that the time
series has a unit root (i.e non stationary). Here, 6 time series are non stationary. Therefore,
we apply a differentiation a second time on these variables.

Normalization for PCA

Also, for Principal Components Analysis to work, we need the data to be normalized such
that each variable has the same scale. The next chunk scales the data with scale (by default
with mean 0 and standard deviation of 1)



# Scale quarterly variables

quarterly_aggregate_seas = quarterly_aggregate_seas >/ group_by(variable) %>7
mutate(value = scale(value)) %>% ungroup()

Dealing with missing values

Last but not least, before extracting the factors, we apply PCA-EM algorithm to this
dataset - not all variables start from the first quarter of 1980, some of them later. In fact,
Stock and Watson (2002) proposed the EM-algorithm as an imputation method to fill in the
missing values. We apply the same algorithm, with a slight difference in the first step by adding
a cross-validation procedure as in Josse et al. (2012) , also used in Burri and Kaufmann (2020).
The MissMDA library is used. In this next code chunk, we apply this revisited EM-algorithm.
We also notice that there is 24.8% of missing values in our quarterly data set (especially
between 1980 and 2000).

# Get the data frame in wide format and get rid of "yq" (dates) for the EM-algorithm
quarterly_aggregate_seas[,3]<-
ifelse(is.nan(quarterly_aggregate_seas$value), NA,quarterly_aggregate_seas$value)
# Deal with NaN
quarterly_aggregate_EM <- quarterly_aggregate_seas 7>%
dplyr::select(yq,variable,value) %>%
pivot_wider (names_from=variable, values_from=value) %>’
dplyr: :select(-yq)
quarterly_aggregate_EM <- as.data.frame(quarterly_aggregate_ EM)
# Count the proportion of missing values
missing_count <- colSums(is.na(quarterly_aggregate_EM ))
total_count <- dim(quarterly_aggregate_EM )

cat("Number of missing values:",
sum(missing_count), "/", total_count[1]*total_count[2], "\n")

Number of missing values: 6411 / 25777

10



# —-——-> 24.8), of missing values

#a###t EM algorithm ######## —————————-

# Compute the number of principal components that will be use to impute the data
test_pca <- estim_ncpPCA(quarterly_aggregate EM,ncp.min = 1, ncp.max = 10, method = "EM")
# Make the imputed data, This is the E-step and M-step

imputated_df <- imputePCA(quarterly_aggregate_EM, ncp = test_pca$ncp,method="EM")
quarterly_aggregate_final <- as.data.frame(imputated_df$completeObs)

#The imputated_df is the object that contains the input data, the estimated data...

#The daframe should look like this (wide format)
# var_1 | var_3 | var_3|

# We add back the dates quarterly_aggregate_final and visualize the final dataframe

quarterly_aggregate_final <-
cbind(unique (quarterly_aggregate_seas$yq) ,quarterly_aggregate_final)

colnames (quarterly_aggregate_final) [1] <- "date"

print (head(quarterly_aggregate_final[,1:3], n=4))

date SWCNPERC  SWCNGOVC
1 1980-01-01 -0.032482712 -0.2276055
2 1980-04-01 -0.645870306 1.8585853
3 1980-07-01 -0.009509818 0.9343675

11



4 1980-10-01 0.109959577 0.5837586

# print the 4 first observations of the first 2 variables

Finally, quarterly level data are converted into monthly frequency using a shape-preserving
piecewise cubic interpolation as in Miranda-Agrippino and Rey (2020) using spline com-
mand from the splines library. This step is optional but in our case is required given that
the large number of parameters to estimate. It provides us more observations (i.e data points)
for the estimation part.

# Perform cubic interpolation for Quarterly Dataset

date_int <- as.Date(quarterly_aggregate_final$date)
month_int <- seq(as.Date("1980-01-01"), as.Date("2023-04-01"), by = "month")
interpolated_data <- data.frame(date = month_int) # Data frame for interpolated values

# Perform cubic interpolation for Quarterly dataset through a loop
for (i in names(quarterly_aggregate_final) [-1]) {

# Extract values for a specific column
quarterly_final_interpolated <- quarterly_aggregate_final[[i]]

# Cubic spline interpolation for each column
variables_interpolated <-
spline(x = date_int, y = quarterly_final_ interpolated, xout = month_int,
method = "fmm")

#Replace the original column with the interpolated values
interpolated_datal[[i]] <- variables_interpolated$y[l:nrow(interpolated_data)]

# Interpolated final dataframe interpolated_data

Checking interpolated data for the first variable of the dataframe and for
its 15 first observations

in blue the variable in quarterly frequency and in black the same variable
in monthly frequency

H H H O

check = quarterly_aggregate_final %>/
pivot_longer(cols = -date,names_to = "name",values_to = "value",

12



values_drop_na = TRUE) 7>% arrange(name) 7%>% dplyr::slice(1:10)

interpolated_data %>
gather (key=key,value=value,-date) %>%
arrange (key) %>%
dplyr::slice(1:30) %>%
gegplot() +
geom_line(aes(x=date,y=value,color = "interpolated data (monthly)")) +
geom_line(data=check, aes(x=date,y=value,color = "original data (quarterly)")) +
scale_color_manual(values = c("interpolated data (monthly)" = "black",
"original data (quarterly)" = "blue")) +
facet_wrap(~key,scales='free') + theme_classic() +
guides(color = guide_legend(title = NULL)) # Remove the legend title

BDCNGOVD |
3 -
2 -
g — interpolated data (monthly)
_ 1
g — original data (quarterly)
O -
_l -
1980 1981 1982
date
Frequency

Note also that many of the series used in this project are not only available at quarterly but
only at monthly or daily frequency (mixed frequency series). As said before, we decided to
convert all the series to monthly values in order to have high-frequency data with more
observations. For temporal aggregation related to daily data, we take the monthly average
(replicated in the next code chunk). Thus, in our specification, monthly variables zj are

13



defined as the average of daily observations xf’t on the number of days N of each month :

N
1
m __ d
Tt = N E ,xzt
=1

#.... After loading daily variables in a separate dataframe :

daily_in_monthly = daily_dataframe %>
group_by(variable, ym = lubridate::floor_date(yd, 'month')) %>%
summarise(value = mean(value))

The subsequent procedures, such as ensuring stationarity, scaling data and handling missing
values, remain consistent with those applied to quarterly variables. However, seasonal adjust-
ment is not always performed since the daily variables in question pertain to financial indices.
Naturally, no seasonal pattern in the financial markets is assumed.

Once we have the three different final “clean” data frames in the same frequency we combine

them in a single data frame and export the final output in csv.

# Export in csv format (can also be exported in Rdata format)
write csv(data_final,"data/data_final.csv")

FAVAR estimation

FAVAR framework

The FAVAR model was created by Bernanke, Boivin, and Eliasz (2005) as an adaptation of a
structural dynamic factor model Stock and Watson (2002) . The FAVAR depicts the dynamics
of a small number of estimated factors, which summarize the common information of
a large set of variables, together with an observed variable (in our case, the Swiss GDP
growth rate : our target to forecast), within a vector autoregressive (VAR) model.

e The huge underlying informative set of the FAVAR reduces the omitted variables bias
e The FAVAR overcomes the overparametrization issue of the traditional VAR.

e Factors models are increasingly used in central banks for macroeconomic forecasting
purposes.

14



Factors extraction

The econometric framework used in this project relies on FAVAR Models as proposed by
Bernanke, Boivin, and Eliasz (2005) extended to include international factors in the spirit of
Boivin, Giannoni, and Mihov (2009), Mumtaz and Surico (2009) and Vasishtha and Maier
(2013). Before proceeding with factor extraction as described above, we first load the data
frame from the previous section and perform some final adjustments. These adjustments
involve descaling the target variable, reducing the estimation sample to the period
from 2000 to 2023 due to multiple structural breaks observed between 1980 and 2000 and
removing outliers using a winsorization procedure. Specifically, we apply winsorization
at 99% across the entire sample and at 95% during the Covid period to address outliers
effectively.

# Load Data and apply some adjustments
data_final <- read.csv("data/data_final.csv")
# Descale the target variable

data_final <- data_final %>, group_by(variable) %>’
mutate(value = ifelse(variable=="SWGDPD", scale(value),value)) %>} ungroup()

# Start from 2000-01-01 (structural breaks before)

data_final = data_final %>
dplyr::filter(ym >= '2000-01-01"')

# Extract before winsorisation (FAVAR model) the observed values of the target variable
# It will be useful for forecast errors (Realized Values of the target variable)
Y_observed = data_final %>} group_by(variable) %>, filter(variable=="SWGDPD") 7>%
dplyr: :select(everything(),-Variable,-TickerDatastrean,
-Frequency,-Start,-Adj,-Type,-Country) %>%
pivot_wider(names_from = variable, values_from = value)
# First Winsorization at 99% on the entire sample
data_final = data_final %>Y%
dplyr::filter(ym >= '2000-01-01"') %>%

group_by(variable) %>%
mutate(value = case_when(value >= quantile(value,0.99) ~ quantile(value,0.99),

15



value <= quantile(value,0.01) ~ quantile(value,0.01),
TRUE ~ value))

# Second Winsorization at 95% on the Covid period only
data_final = data_final %>Y%
dplyr::filter(ym >= '2000-01-01') %>%
group_by(variable) %>%
mutate(value = ifelse(ym >= '2020-01-01',
case_when(value >= quantile(value, 0.95) ~ quantile(value, 0.95),
value <= quantile(value, 0.05) ~ quantile(value, 0.05),
TRUE ~ value),
value))

The model includes two blocks of factors; one for Switzerland (named domestic block)
and one for the rest of world (named foreign block), extracted respectively from large sets
of Swiss and international time series. The latter refer to economic variables from the main
trading partners of Switzerland and having the weight to impact Swiss economy (UK, Italy,
USA, China, France, Germany, Japan).

The measurement equation is :

XtH _ Aﬁ ATQ FtH A%/ Uf{
(X:)‘(O s) \re )P0 ) Vet @

where domestic and foreign observational time series: X, = [X, X;] and domestic and foreign
unobserved factors: F, = [FH F}]. v, ~ N(0,%) is a vector of reduced form errors.

As you notice in the measurement equation, we allow the domestic observed variables to load
on both domestic and foreign factors as well as target variable Y,, whereas foreign variables
only load on foreign factors like in Kamber et al. (2016) and following our small open economy
framework.

In the next code chunk, we extract the foreign factors using the prcomp command by selecting
the first principal component of each type of foreign variable (Real Activity, Inflation, Money
and Interest Rates, and Financial Conditions), which explains the majority of the total variance
in the associated data set. This process is straightforward because foreign variables only load
onto foreign factors. The summary command displays the total variance explained by the first
principal component.

## Extraction foreign factor (Real activity)

foreign RA <- data_final %>), filter(Type=="RA") U>%

16



filter(Country!= "Switzerland")

foreign RA <- foreign_ RA %>J, group_by(variable) %>%
dplyr: :select(everything() ,-Variable,-TickerDatastrean,
-Frequency,-Start,-Adj,-Type,-Country) %>%
pivot_wider (names_from = variable, values_from = value) # Wide format

foreign RA <- foreign RA[,-1] # Get rid of the date column
pc_foreign_RA <- prcomp(foreign_RA,center = FALSE, scale. = FALSE, rank.=1)

summary (pc_foreign RA) # Total Variance explained by the first principal component

Importance of first k=1 (out of 53) components:
PC1

Standard deviation 2.5531

Proportion of Variance 0.2716

Cumulative Proportion 0.2716

## Eztraction foreign factor (Inflation)
foreign INF <- data_final %>% filter(Type=="RA") %>} filter(Country!= "Switzerland")
foreign_INF <- foreign_INF %>J, group_by(variable) %>%
dplyr::select(everything() ,-Variable,-TickerDatastream,
-Frequency,-Start,-Adj,-Type,-Country) %>%
pivot_wider (names_from = variable, values_from = value) #Wide format
foreign INF <- foreign INF[,-1] # Get rid of the date column

pc_foreign INF <- prcomp(foreign_INF,center = FALSE, scale. = FALSE, rank.=1)

summary (pc_foreign INF) # Total Variance explained by the first principal component

Importance of first k=1 (out of 53) components:
PC1

Standard deviation 2.5531

Proportion of Variance 0.2716

Cumulative Proportion 0.2716

17



## Extraction foreign factor (Money and Interest Rates)
foreign MI <- data_final %>J filter(Type=="MI") %>, filter(Country!= "Switzerland") #
foreign MI <- foreign MI %>’ group_by(variable) %>’
dplyr::select(everything() ,-Variable,-TickerDatastream,
-Frequency,-Start,-Adj,-Type,-Country) %>%
pivot_wider (names_from = variable, values_from = value) # Wide format
foreign MI <- foreign MI[,-1] # Get rid of the date column
pc_foreign MI <- prcomp(foreign MI,center = FALSE, scale. = FALSE, rank.=1)
summary (pc_foreign MI) # Total Variance explained by the first principal component
Importance of first k=1 (out of 46) components:
PC1
Standard deviation 2.1147

Proportion of Variance 0.2163
Cumulative Proportion 0.2163

## Eztraction foreign factor (Financial conditions)
foreign FC <- data_final %>’ filter(Type=="FC") %>J, filter(Country!= "Switzerland")
foreign FC <- foreign_FC %>’ group_by(variable) %>
dplyr: :select(everything(),-Variable,-TickerDatastrean,
-Frequency,-Start,-Adj,-Type,-Country) %>%
pivot_wider (names_from = variable, values_from = value) #Wide format

foreign FC <- foreign FC[,-1] # Get rid of the date column

pc_foreign_FC <- prcomp(foreign_FC,center = FALSE, scale. = FALSE, rank.=1)

summary (pc_foreign_FC) # Total Variance explained by the first principal component

Importance of first k=1 (out of 41) components:
PC1
Standard deviation 3.1674
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Proportion of Variance 0.3286
Cumulative Proportion 0.3286

Now let’s extract domestic factors. It is not as straightforward as with foreign factors
because domestic variables load on domestic factors, foreign factors and on the target variable
(Y,), i.e the Swiss GDP growth rate. Therefore, with an iteration procedure like in Boivin,
Giannoni, and Mihov (2009), we remove what we explain by foreign factor and Y, . By
simplicity, we do not extract the first principal component of the domestic variables for each
type (Real Activity, Inflation, Money and Interest rates and Financial Conditions) but the
first 4 principal components on all Swiss variables in the spirit Boivin, Giannoni, and Mihov
(2009). We also perform the test proposed by Bai and Ng (2002) in order to determine the
optimal number of factors r*. According to the second criteria IC,, the optimal number is
8 but 3 factors should be fineto capture most of the information if we rely on the screeplot
below.

# filter all Swiss variables

Xdom <- data_final 7>J filter(Country== 'Switzerland') %>%
dplyr::select(-Variable,-TickerDatastrean,
-Frequency,-Start,-Adj,-Type,-Country) %>%
pivot_wider (names_from = variable, values_from = value) >%
dplyr: :select(-ym)

# filter the target variable
SWGDP <- data_final %>% filter(variable== 'SWGDPD') %>%
dplyr::select(-Variable,-TickerDatastreanm,
-Frequency,-Start,-Adj,-Type,-Country) %>%
pivot_wider(names_from = variable, values_from = value) %>%
dplyr: :select(-ym)

bai_and_ng_optimal_factors <- ICr(Xdom) #0Optimal number of factors

screeplot(bai_and_ng_optimal_factors ) # Visualization inspection (screeplot)
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% Variance Explained

Principal Component

## Remove by iteration (like in Boivin) the foreign and $Y_t$
## part from the domestic wvariables space
## (50 iterations like in Burri (2020))

# Initialize Xresid matrix (residuals matrix)
Xresid <- Xdom

rep = 50 # number of iterations

fc_dom <- prcomp(Xdom, rank=3) # 3 first principal components on Swiss variables

# Start the iteration

for(n in 1:rep){
for(i in 1:dim(Xdom) [2]){
# Estimate residuals in domestic variables
Data <- data.frame(Xdom[,i], pc_foreign_ RA$x,pc_foreign_ INF$x,
pc_foreign_MI$x,pc_foreign_ FC$x,SWGDP,fc_dom$x[,1],
fc_dom$x[,2] ,fc_dom$x[,3])
colnames(Data) <- c("x", "fc_for RA","fc_for_ INF",

"fc_for MI","fc_for FC", "GDP","fc_dom_ 1",
"fc_dom_2","fc_dom_3")
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Reg <-
Im(x~fc_for_ RA +fc_for_ INF + fc_for MI + fc_for FC +
GDP + fc_dom_ 1 + fc_dom 2 + fc_dom 3 , data = Data)

Xresid[,i] <- Data$x - Reg$coefficients[1] -
Reg$coefficients[2]*Data$fc_for_RA - Reg$coefficients[4]+*Data$fc_for MI -
Reg$coefficients[5]*Data$fc_for FC - Reg$coefficients[6]*Data$GDP

# Remove foreign inflation factor because of multicolinearity found

PCdom  <- prcomp(Xresid,rank= 3)
fc_dom$x[,1] <- PCdom$x[,1]
fc_dom$x[,2] <- PCdom$x[,2]
fc_dom$x[,3] <- PCdom$x[,3]

fc_dom <- data.frame(fc_dom$x[,1],fc_dom$x[,2],fc_dom$x[,3])
colnames(fc_dom) <- c("fc_dom_1","fc_dom_2","fc_dom_3") # Domestic factors

We can plot our 3 domestic factors.

# Create a sequence of dates
dates <- seq(as.Date("2000-01-01"), by = "1 month", length.out = nrow(fc_dom))

# Create the xts object with the principal components and the dates
ts_dom_fc <- xts(fc_dom, order.by = dates)

# Set up the plotting layout to display three plots in two rows
par(mfrow = c(2, 2))

# Plot each factor separately
for (i in 1:3) {
# Create a new plot for each factor
plot <- ts.plot(ts_dom_fc[, il, gpars = list(col = "blue"), type = "1", 1ty = 1,
main = paste("Domestic Factor", i), xlab = "Date", ylab = "Value")
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# Add legend for each plot
legend("topright", legend = paste("Factor", i), col = "blue", 1ty = 1, bty = "n")

}
Domestic Factor 1 Domestic Factor 2
() ()
> >
g R HM — "Factlr 1 | g EIFJWW|
0 50 150 250 0 50 150 250
Date Date
Domestic Factor 3
()
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©
> ' | | | I 1
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Date
VAR Modeling

Then, for the second step of the estimation, we can model our factors estimated by Principal
Components along with the target variable to forecast within a VAR framework with
Ordinary Least Squares (OLS). This can be estimated equation by equation with the vars
library. The VAR transition equation is the following :

Y, $11(L)  ¢12(L)  ¢15(L) Y1 uf
FtH = | ¢a1(L) Poa(L) ¢o3(L) F£1 + uf (3)
Fy 0 0 $33(L) 1 uy

with u, ~ N (0,9Q) a vector of reduced form errors.

As you can see, we exploit the fact that Switzerland is a small open economy in the transition
equation (restricted VAR model) where foreign factors have an impact on domestic factors and
the Swiss target variable but are not governed by them. However, we do not put restrictions
on our VAR matrix because the domestic factors are orthogonal to the foreign factors by
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construction (first step of the estimation). Thus, foreign factors are not affected by domestic
factors.

In scalar form, the variable we wish to forecast follows the following dynamics:

Yirsn = C1+ 011(L)y; o + O12(L)FH + ¢13(L)FF + ey,

# load the extracted factors in step 1
# along with the target variable SWGDP.
# Note that fc_dom contains already our 3 domestic factors.

VAR_data <-
cbind (SWGDP,fc_dom,pc_foreign_RA$x,pc_foreign MI$x,pc_foreign_ FC$x)

# Rename the columns
colnames (VAR_data) <-
c("SWGDPD", "fc_dom_1", "fc_dom_2","fc_dom_3","fc_for RA","fc_for MI","fc_for_ FC")

Once we have a data frame with the target and the domestic and foreign factors, we need to
select the optimal number of lags. There are different criteria from which we can choose. We

choose the most parsimonious one the SC,, criteria (the third one in VARselect).

vars: :VARselect (VAR_data)

$selection
AIC(n) HQ(n) SC(n) FPE(n)
9 4 2 6
$criteria
1 2 3 4 5
AIC(n) -1.1551333 -4.20643370 -4.728889582 -5.387756672 -5.510733408
HQ(n) -0.8554359 -3.64450110 -3.904721776 -4.301353655 -4.162095180
SC(n) -0.4087940 -2.80704738 -2.676456316 -2.682276459 -2.152206246
FPE(n) 0.3150538 0.01491136 0.008858703 0.004598919 0.004088602
6 7 8 9 10
AIC(n) -5.650838744 -5.619230426 -5.660116437 -5.663729622 -5.526804178
HQ(n) -4.039965305 -3.746121776 -3.524772576 -3.266150550 -2.866989896
SC(n) -1.639264634 -0.954609368 -0.342448431 0.306985332 1.096957724
FPE(n) 0.003582494 0.003738881 0.003642824 0.003700104 0.004347118
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opt.lags = vars::VARselect(VAR_data)

Let’s say we choose the SC,, criterion that suggests that the optimal lag is equal to 2.
We can now estimate the model using the function VAR from the package vars.

FAVAR = vars::VAR(VAR_data, p= opt.lags$selection[3], type = "const")
summary (FAVAR) $varresult[[1]] # First equation of the FAVAR

Call:
Im(formula = y ~ -1 + ., data = datamat)

Residuals:
Min 1Q Median 3Q Max
-0.98029 -0.08064 0.00529 0.07972 1.83765

Coefficients:

Estimate Std. Error t value Pr(>|tl)
SWGDPD .11 1.605292 0.062618 25.636 <2e-16 **x
fc_dom_1.11 0.002676 0.009969 0.268 0.7886
fc_dom_2.11 0.015280 0.013500 1.132 0.2587
fc_dom_3.11 0.014359 0.012031 1.193 0.2338
fc_for_ RA.11 0.040296 0.019765 2.039 0.0425 =*
fc_for MI.11 0.001309 0.014152 0.093 0.9264
fc_for_FC.11 -0.002505 0.006769 -0.370 0.7117
SWGDPD.12 -0.822950 0.062079 -13.257 <2e-16 **x
fc_dom_1.12 -0.002673 0.010192 -0.262 0.7933
fc_dom_2.12 -0.014770 0.013032 -1.133 0.2581
fc_dom_3.12 -0.010139 0.011856 -0.855 0.3932
fc_for RA.12 -0.057014 0.019286 -2.956 0.0034 *x
fc_for MI.12 0.010646 0.014143 0.753 0.4523
fc_for FC.12 -0.005369 0.006491 -0.827 0.4090
const 0.019654 0.013390 1.468 0.1433
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2005 on 263 degrees of freedom
Multiple R-squared: 0.9152, Adjusted R-squared: 0.9107
F-statistic: 202.8 on 14 and 263 DF, p-value: < 2.2e-16
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Diagnostic checks

We also carry out a battery of diagnostic checks
o Invertibility and Stationarity of the FAVAR

All the roots lie inside the unit circle. Therefore, the FAVAR is stationary and invertible. Co-
variance stationarity is an important property for representation, estimation and inference.

roots (FAVAR)

[1] 0.9280405 0.9280405 0.8413460 0.8413460 0.8325475 0.8325475 0.8232638
[8] 0.7363609 0.7363609 0.6965668 0.6905134 0.6905134 0.3731820 0.1345483

e Structural Breaks

We also perform an OLS-CUSUM test (structural break test) suggesting that there is
parameter instability if the cumulative sum of the recursive residuals breaks one of the
two boundaries in red in the graph below. The test is performed for each equation of our
FAVAR model. There was parameter instability in the old sample (1980-2023). That’s
why we reduced the estimation sample (from 2000 to 2023 now).

par (mfrow = c(3, 3))

par(mar = c(3, 3, 2, 2))

stability_test <- stability(FAVAR,type = c("OLS-CUSUM"))
plot(stability_test)
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e Test of residuals

We also do some tests on residuals

-Arch Test detects volatility clustering by examining the autocorrelation of squared residuals
in a time series model.

-Normality test assesses if residuals follow a normal distribution
-Serial test checks for correlation between residuals at different lags in a time series model.

Result : We reject at 1% the null hypothesis of all these tests meaning firstly that there is
significant evidence of conditional heteroskedasticity in the data. In other words, it suggests
that the variance of the errors is not constant over time and there are patterns or clusters of
volatility in the data (ARCH effects) but also that the residuals are not normally distributed
and auto correlated.

#Arch Test

arch.test(FAVAR,multivariate.only = TRUE)

ARCH (multivariate)

data: Residuals of VAR object FAVAR
Chi-squared = 4795.1, df = 3920, p-value < 2.2e-16
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# Normality test

normality.test(FAVAR, multivariate.only = TRUE)

$JB

JB-Test (multivariate)
data: Residuals of VAR object FAVAR
Chi-squared = 11594, df = 14, p-value < 2.2e-16
$Skewness

Skewness only (multivariate)
data: Residuals of VAR object FAVAR
Chi-squared = 184.37, df = 7, p-value < 2.2e-16
$Kurtosis

Kurtosis only (multivariate)

data: Residuals of VAR object FAVAR
Chi-squared = 11410, df = 7, p-value < 2.2e-16

# Serial correlation test

serial.test (FAVAR)

Portmanteau Test (asymptotic)

data: Residuals of VAR object FAVAR

Chi-squared = 1178.1, df = 686, p-value < 2.2e-16

Fanchart

The package vars provides a variety of tools to analyse and represent the results graphically.
For example, the fanchart command provides a graphical representation of the forecasts and
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their confidence intervals. We illustrate it with a short forecast 4 quarters ahead (12 steps
ahead as data are in monthly frequency).

FAVAR_prediction = predict(FAVAR,n.ahead=12)
vars: :fanchart (FAVAR_prediction, names = "SWGDPD")

Fanchart for variable SWGDPD
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Pseudo Out-of-sample evaluation

Our unconditional forecasts (i.e the optimal h-step ahead forecasts) can be rewritten as :

Yo v Y iine
() = 3o (4 @

j=1 t—j+hl|t

* — * — ;
where Y iine = Yijin and EY ine = Fijin for h <

Using equation this equation, we can forecast the Swiss GDP growth rate in Switzerland for
any horizon from 1 (one quarter ahead) to 12 (twelve quarters ahead).

Then, in order to assess the performance of our model, we conduct a pseudo out-of-sample
forecast evaluation exercise where the models’ accuracy in predicting Swiss GDP growth is
assessed recursively. Indeed, in order to assess the predictive accuracy of our FAVAR model
regarding Swiss GDP growth, out-of-sample forecasts are produced each quarter for the period
between 2010Q1 and 2023Q2 (evaluation sample). As in Diebold and Mariano (1995) , we
denote T as the length of the whole sample with ¢ ranging from 1 to 7' (from 2000Q1 to
2023Q2), R (2010Q1) denotes the start of our evaluation sample (where R < T') and h the
horizon in quarter (from h = 1 to h = 12). The first step consists in estimating our sample
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(from 1 to R). At time R, forecast is calculated for horizon 1 to 12, using equation of the
unconditional forecast show above. Then, at time R + 1, new information allows the model
to be updated and re-estimated and forecasts for horizons one to 12 are calculated using the
revised model. Using new data available at R 4+ t, the model is updated and reestimated till
the end of the sample minus the horizon. In practice, as we use monthly frequency data, we
produce forecasts for Swiss GDP growth rate at the three, six, nine and twelve months horizon
(t + h), then we continue by updating the estimation sample by adding one quarter (i.e three
months). With this recursive technique, the sample size grows over time. It is considered
as the best technique in absence of structural breaks in the sample. Additionally, the size
of the training data sample (or estimation sample) from 2000Q1 and 2010Q1 is sufficient to
produce stable estimation results. Note that factors are estimated over the full sample and
not reestimated at each period primarily due to computational considerations.

Mean squared forecast errors

Using all the past notation, squared forecast errors can be computed from R + 1 for each
horizon in order to evaluate the accuracy of the model, namely:

e?,h = (Yen — @t+h\t)2
where y, ., is the realized value of target variable and gy, |, the forecast of the target variable
made in time ¢ for horizon h.

Then, Mean Squared Forecast Errors (MSFE) are computed as follow :

T—h
1 2

MSFE, =
PTTCR—h 1

where P=T—-h— R+ 1.

Therefore, in order to compute the performance of our model relatively to the six benchmarks,
we compute the ratio of the relative MSFE, which is defined as :

MSFE,
MSFEbenchmark,h

When the MSFE ratio is smaller than one, it indicates that our model outperforms the bench-
mark. Conversely, when the ratio is larger than one, the benchmark performs better than our
model

Now, let’s produce a table computing the relative ratio of mean squared forecast errors over
several horizons thanks to our homemade function implemented below. Thus function will
allow us to compute the relative MSFE over 12 steps ahead (12 quarters ahead) relative to
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the traditional univariate ARMA(p,q,d) benchmarks. Note that our evaluation sample here
starts at 2010M1 (first date = 121 ).

#function relative MSFE table over 12 horizons

Y observed <- as.ts(Y_observedl[,2])
# Our true values realized values of Swiss GDP growth
# rate from the beginning (without covid adjustment) -> convert to time series (ts object)

relative_msfe_favar <- function(observed.target, var.dataframe, h = 36,
T = nrow(var.dataframe), first_date = 121,
p_arima = 1, d_arima = 0, q_arima = 0, p_favar = 2) {

# first date is 2010M1, the start of our evaluation sample

ratio.table <- numeric(h/3)
el <- NULL # Initialization of the matrix of forecast errors of ARIMA
e2 <- NULL # Initialization of the matrix of forecast errors of FAVAR

for (h_value in seq(3, h, by = 3)) { # Iterate over the h horizons provided

for (i in seq(from = first_date, to = (T - h_value), by = 3)) {
# Start of the sequence of forecast errors for each horizon

# Estimation of the ARIMA (recursive scheme)
estim.model.arima <- arima(var.dataframe$SWGDPD[1:i],
order = c(p_arima, d_arima, g_arima))

# Estimation of the FAVAR (recursive scheme)
estim.model.favar <- VAR(var.dataframe[1l:i, ], p = p_favar)

# Sequence of forecast errors for horizon h for the ARIMA
el <- c(el, (observed.target[i + h_value] -
predict(estim.model.arima, n.ahead = h_value)$pred[h_valuel) 2)

# Sequence of forecast errors for horizon h for the FAVAR

e2 <- c(e2, (observed.target[i + h_value] -
predict(estim.model.favar, n.ahead = h_value)$fcst$SWGDPD[h_value, 1])72)

# Ratio of relative MSFE per horizon
ratio_per_h <- mean(e2) / mean(el)
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Table 1: Ratio of MSFE

Horizon Ratio
1 0.88
2 0.90
3 0.94
4 0.94
5 0.95
6 0.96
7 0.97
8 0.97
9 0.97
10 0.98
11 0.98
12 0.98

ratio.table[h_value/3] <- ratio_per_h # Construction of the table
}

result_relative_msfe_table <- data.frame('Horizon' = seq(l, 12), 'Ratio' = ratio.table)

return(kableExtra: :kbl(result_relative_msfe_table, align= "c",
caption = "Ratio of MSFE", format = "latex",

booktabs= TRUE, digits = 2) %>%
kableExtra: :kable_styling("hover",full _width = T))

# MSFE ratio table with a simple AR(1) process

table <- relative_msfe_favar(observed.target = Y_observed,
var.dataframe = VAR data,h = 36,T = nrow(VAR_data),
first_date = 121, p_arima = 1, d_arima = 0, g_arima = 0, p_favar = 2)

table

When comparing our FAVAR model with a simple AR(1) process, represented by an
ARMA(1,0,0) model, we observe that our FAVAR model outperforms this benchmark across
all forecasting horizons (from 1 to 12 quarters). This superiority is indicated by the fact that
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the ratio of mean squared forecast error (MSFE) between the FAVAR model and the AR(1)
process is consistently smaller than 1 over all horizons.

Additionally, to validate the robustness of our FAVAR model, we can conduct further com-
parisons with alternative ARMA(p,q,d) processes and other multivariate benchmark models
such as VAR models with selected leading macro indicators, FAVAR models without foreign
blocks or Bayesian VAR (BVAR) models on different evaluation samples (Covid excluded, only
before Covid...). These comparisons will provide deeper insights into the relative forecasting
performance of our FAVAR model against various alternative modeling approaches.

We can also compute other indicators of performance such as :

e RMSE: Root Mean Squared Error

e MAE: Mean Absolute Error

o MPE: Mean Percentage Error

e MAPE: Mean Absolute Percentage Error
¢ MASE: Mean Absolute Scaled Error

It can be can very easily with the package forecast command accuracy .

It can be also interesting to perform some Diebold Mariano test (dm-test) on different horizons
so as to assess whether the two models have significantly different accuracy [with the help
of the dm-test command from the forecast library].
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